Abstract
Bacteria that are highly virulent, expressing high infectivity, and able to survive nebulization, pose great risk to the human population. One of these is Francisella tularensis, the etiological agent of tularemia. F. tularensis is a subject of intense scientific interest due to the fact that vaccines for its immunoprophylaxis in humans are not yet routinely available. One of the substantial obstacles in developing such vaccines is our insufficient knowledge of processes that initiate and regulate the expression of effective protective immunity against intracellular bacteria. Here, we present data documenting the different pattern of cellular behavior occurring in an environment unaffected by microbiota using the model of germ-free mice mono-associated with F. tularensis subsp. holarctica strain LVS in comparison with a classic specific-pathogen-free murine model during early stages of infection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.