Abstract

BackgroundExtant cubozoans are voracious predators characterized by their square shape, four evenly spaced outstretched tentacles and well-developed eyes. A few cubozoan fossils are known from the Middle Cambrian Marjum Formation of Utah and the well-known Carboniferous Mazon Creek Formation of Illinois. Undisputed cubozoan fossils were previously unknown from the early Cambrian; by that time probably all representatives of the living marine phyla, especially those of basal animals, should have evolved.MethodsMicroscopic fossils were recovered from a phosphatic limestone in the Lower Cambrian Kuanchuanpu Formation of South China using traditional acetic-acid maceration. Seven of the pre-hatched pentamerous cubozoan embryos, each of which bears five pairs of subumbrellar tentacle buds, were analyzed in detail through computed microtomography (Micro-CT) and scanning electron microscopy (SEM) without coating.ResultsThe figured microscopic fossils are unequivocal pre-hatching embryos based on their spherical fertilization envelope and the enclosed soft-tissue that has preserved key anatomical features arranged in perfect pentaradial symmetry, allowing detailed comparison with modern cnidarians, especially medusozoans. A combination of features, such as the claustrum, gonad-lamella, suspensorium and velarium suspended by the frenula, occur exclusively in the gastrovascular system of extant cubozoans, indicating a cubozoan affinity for these fossils. Additionally, the interior anatomy of these embryonic cubozoan fossils unprecedentedly exhibits the development of many new septum-derived lamellae and well-partitioned gastric pockets unknown in living cubozoans, implying that ancestral cubozoans had already evolved highly specialized structures displaying unexpected complexity at the dawn of the Cambrian. The well-developed endodermic lamellae and gastric pockets developed in the late embryonic stages of these cubozoan fossils are comparable with extant pelagic juvenile cubomedusae rather than sessile cubopolyps, whcih indicates a direct development in these fossil taxa, lacking characteristic stages of a typical cnidarian metagenesis such as planktonic planula and sessile polyps.

Highlights

  • The phylum Cnidaria is a diverse group of relatively simple diploblastic animals with highly complex and typical venomous cell, ‘cnida’

  • The specimen ELISN108-343 is apparently different from ELISN31-5 in many aspects, such as external morphology and internal anatomy, especially the organization of gastric pockets and the derivation of subumbrellar endoderm

  • In ELISN108-343, the endoderm of the subumbrella is continuous with the upper part of accessory septa, whereas in ELISN31-5, it is mainly derived from the upper part of gonad-lamellae

Read more

Summary

Introduction

The phylum Cnidaria is a diverse group of relatively simple diploblastic animals with highly complex and typical venomous cell, ‘cnida’. Medusozoans comprise four classes: Staurozoa, Scyophozoa, Hydrozoa and Cubozoa [1] The latter, popularly known as ‘box jellyfish’ or ‘sea wasps’, is a monophyletic group characterized by a four-sided box-shaped appearance, four bunches of interradial tentacles each with a wing-like pedalium at the proximal end, and four well-developed complex eyes as well as a circular velarium suspended perpendicularly by four bracket-like perradial frenula [1,2] (see Figure 1A–B). The fossil record of cubozoans is quite sparse [7,8]; a few probable cubozoan fossils with simple and unbranched pedalia are known from the Pennsylvanian Mazon Creek Formation of central USA and the Middle Cambrian Marjum Formation of Utah, western USA [8]. Undisputed cubozoan fossils were previously unknown from the early Cambrian; by that time probably all representatives of the living marine phyla, especially those of basal animals, should have evolved

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.