Abstract

We have developed a theoretical analysis to systematically study the early and late-time evolution of the Rayleigh–Taylor instability in a finite-sized spatial domain. The nonlinear dynamics of fluids with similar and contrasting densities are considered for two-dimensional flows driven by sustained acceleration. The flows are periodic in the plane normal to the direction of acceleration and have no external mass sources. Group theory analysis is applied to accurately account for the mode coupling. Asymptotic linear and nonlinear solutions are found to describe the interfacial dynamics far from and near the boundaries. The influence of the size of the domain on the diagnostic parameters of the flow is identified. In particular, it is shown that in a finite-sized domain the flow is slower compared to the spatially extended case. The direct link between the multiplicity of solutions and the interfacial shear is explored. It is suggested that the interfacial shear function acts as a natural parameter to the family of nonlinear asymptotic solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.