Abstract

Abstract. Remote sensing measurements of aerosols using depolarization Raman lidar systems from four EARLINET (European Aerosol Research Lidar Network) stations are used for a comprehensive analysis of Saharan dust events over the Mediterranean basin in the period 2014–2017. In this period, 51 dust events regarding the geometrical, optical and microphysical properties of dust were selected, classified and assessed according to their radiative forcing effect on the atmosphere. From west to east, the stations of Granada, Potenza, Athens and Limassol were selected as representative Mediterranean cities regularly affected by Saharan dust intrusions. Emphasis was given on lidar measurements in the visible (532 nm) and specifically on the consistency of the particle linear depolarization ratio (δp532), the extinction-to-backscatter lidar ratio (LR532) and the aerosol optical thickness (AOT532) within the observed dust layers. We found mean δp532 values of 0.24±0.05, 0.26±0.06, 0.28±0.05 and 0.28±0.04, mean LR532 values of 52±8, 51±9, 52±9 and 49±6 sr and mean AOT532 values of 0.40±0.31, 0.11±0.07, 0.12±0.10 and 0.32±0.17, for Granada, Potenza, Athens and Limassol, respectively. The mean layer thickness values were found to range from ∼ 1700 to ∼ 3400 m a.s.l. Additionally, based also on a previous aerosol type classification scheme provided by airborne High Spectral Resolution Lidar (HSRL) observations and on air mass backward trajectory analysis, a clustering analysis was performed in order to identify the mixing state of the dusty layers over the studied area. Furthermore, a synergy of lidar measurements and modeling was used to analyze the solar and thermal radiative forcing of airborne dust in detail. In total, a cooling behavior in the solar range and a significantly lower heating behavior in the thermal range was estimated. Depending on the dust optical and geometrical properties, the load intensity and the solar zenith angle (SZA), the estimated solar radiative forcing values range from −59 to −22 W m−2 at the surface and from −24 to −1 W m−2 at the top of the atmosphere (TOA). Similarly, in the thermal spectral range these values range from +2 to +4 W m−2 for the surface and from +1 to +3 W m−2 for the TOA. Finally, the radiative forcing seems to be inversely proportional to the dust mixing ratio, since higher absolute values are estimated for less mixed dust layers.

Highlights

  • The Saharan desert is one of the major dust sources globally, with dust advection to the Mediterranean countries being modulated by meteorology along rather regular seasonal patterns (Mona et al, 2012)

  • By further comparing the modeled mass vertical profiles to the ones calculated by lidar, we report that the mean center of mass estimated from BSC-DREAM8b profiles is 0.6 km lower than the one calculated from the lidar measurements (2.6±1.0 km and 3.2±1.1 km respectively)

  • Concerning the lidar ratio (LR) values, no remarkable deviations were observed among the four stations, having mean values around 51 sr, which are in very good agreement with findings in the literature (Tesche et al, 2009; Ansmann et al, 2012; Groß et al, 2011; 2013)

Read more

Summary

Introduction

The Saharan desert is one of the major dust sources globally, with dust advection to the Mediterranean countries being modulated by meteorology along rather regular seasonal patterns (Mona et al, 2012). Considering that the Mediterranean basin is a region of high evaporation, low precipitation and remarkable solar activity, the transportation of aerosols accompanied by aging and mixing processes make this area a study of interest for present and future climate change effects (Michaelides et al, 2018). Considerable uncertainties in quantifying the global direct radiative effects of aerosols arise from the variability of their spatiotemporal distribution and the aging and mixing processes that can affect their optical, chemical and microphysical properties and influence many processes that modulate regional climate. Papadimas et al (2012) reported that the aerosol optical depth seems to be the main parameter for modifying the regional aerosol radiative effects (under cloud-free conditions) and that on an annual basis, aerosols can induce a significant “planetary” cooling over the broader Mediterranean basin. A comprehensive analysis from ground-based aerosol optical properties to vertical profiles of short- and longwave (SW and LW) radiation estimations in the Mediterranean region has been reported so far only in a few papers (Sicard et al, 2014; Meloni et al, 2003, 2015; Valenzuela et al, 2017; Gkikas et al, 2018)

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call