Abstract

Life cycle timing is critical for yield and productivity of Brassica napus (rapeseed) cultivars grown in different environments. To facilitate breeding for earliness traits in rapeseed, SNP loci and underlying candidate genes associated with the timing of initial flowering, maturity and final flowering, as well as flowering period (FP) were investigated in two environments in a diversity panel comprising 300 B. napus inbred lines. Genome-wide association studies (GWAS) using 201,817 SNP markers previously developed from SLAF-seq (specific locus amplified fragment sequencing) revealed a total of 131 SNPs strongly linked (P < 4.96E-07) to the investigated traits. Of these 131 SNPs, 40 fell into confidence intervals or were physically adjacent to previously published flowering time QTL or SNPs. Phenotypic effect analysis detected 35 elite allelic variants for early maturing, and 90 for long FP. Candidate genes present in the same linkage disequilibrium blocks (r2>0.6) or in 100 kb regions around significant trait-associated SNPs were screened, revealing 57 B. napus genes (33 SNPs) orthologous to 39 Arabidopsis thaliana flowering time genes. These results support the practical and scientific value of novel large-scale SNP data generation in uncovering the genetic control of agronomic traits in B. napus, and also provide a theoretical basis for molecular marker-assisted selection of earliness breeding in rapeseed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.