Abstract

BackgroundEarly maturity is one of the most important and complex agronomic traits in upland cotton (Gossypium hirsutum L). To dissect the genetic architecture of this agronomically important trait, a population consisting of 355 upland cotton germplasm accessions was genotyped using the specific-locus amplified fragment sequencing (SLAF-seq) approach, of which a subset of 185 lines representative of the diversity among the accessions was phenotypically characterized for six early maturity traits in four environments. A genome-wide association study (GWAS) was conducted using the generalized linear model (GLM) and mixed linear model (MLM).ResultsA total of 81,675 SNPs in 355 upland cotton accessions were discovered using SLAF-seq and were subsequently used in GWAS. Thirteen significant associations between eight SNP loci and five early maturity traits were successfully identified using the GLM and MLM; two of the 13 associations were common between the models. By computing phenotypic effect values for the associations detected at each locus, 11 highly favorable SNP alleles were identified for five early maturity traits. Moreover, dosage pyramiding effects of the highly favorable SNP alleles and significant linear correlations between the numbers of highly favorable alleles and the phenotypic values of the target traits were identified. Most importantly, a major locus (rs13562854) on chromosome Dt3 and a potential candidate gene (CotAD_01947) for early maturity were detected.ConclusionsThis study identified highly favorable SNP alleles and candidate genes associated with early maturity traits in upland cotton. The results demonstrate that GWAS is a powerful tool for dissecting complex traits and identifying candidate genes. The highly favorable SNP alleles and candidate genes for early maturity traits identified in this study should be show high potential for improvement of early maturity in future cotton breeding programs.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-016-2875-z) contains supplementary material, which is available to authorized users.

Highlights

  • Maturity is one of the most important and complex agronomic traits in upland cotton (Gossypium hirsutum L)

  • Genome and chromosome characteristics of SLAF-based single nucleotide polymorphism (SNP) in upland cotton varieties SLAF-seq was performed with an Illumina HiSeq 2500 (Illumina, Inc.; San Diego, CA, US) at Biomarker Technologies Corporation in Beijing to genotype 355 cotton varieties/accessions

  • SNP loci with a minor allele frequency (MAF) of

Read more

Summary

Introduction

Maturity is one of the most important and complex agronomic traits in upland cotton (Gossypium hirsutum L). To dissect the genetic architecture of this agronomically important trait, a population consisting of 355 upland cotton germplasm accessions was genotyped using the specific-locus amplified fragment sequencing (SLAF-seq) approach, of which a subset of 185 lines representative of the diversity among the accessions was phenotypically characterized for six early maturity traits in four environments. Fiber production is one of the most important traits in cotton, and the selection and popularization of early-maturing cotton varieties are of significant value in. Maturity has been reported to be negatively correlated with yield and fiber quality [3]. It is difficult to simultaneously improve early maturity, yield and fiber quality using conventional breeding methods. Molecular markers linked to causal genes or QTLs can be used for marker-assisted selection (MAS) and genomic selection

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call