Abstract

HypothesisIdentification and quantification of harmful chemicals in e-cigarette aerosol requires collecting the aerosolized e-liquid for chemical analysis. In 2016, Olmedo at al. empirically developed a simple method for aerosol collection by directing the aerosol through a sequence of alternating straight and converging tubing sections, which drain the recovered e-liquid into a collection vial. The tubing system geometry and flow conditions promote inertial impaction of aerosolized e-liquid on tube walls, where it deposits and flows into the collection vial. ExperimentsWe use high-speed optical imaging to visualize aerosol transport in proxies of the collection system. We also determined collection efficiencies of various configurations of the collection system. FindingsA turbulent jet emerges from converging conical sections and impinges onto the wall of downstream tubing sections, resulting in inertial impaction and deposition of the aerosol. For inertial impaction to occur the tip radius of the converging section must be small enough for a jet to be formed and the sequence of tubing sections must be curved in a polygon-like manner such that the jet emerging from a converging section impinges on the downstream tube wall. The collection efficiency is significantly smaller without such curvature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call