Abstract

We report the results of the experimental investigation of magnonic Bloch modes in the presence of asymmetric dispersion induced by the interfacial Dzyaloshinskii-Moriya interaction by means of Brillouin light-scattering technique. It was realized in a specially designed ultrathin CoFeB/Pt periodic structure consisting of an array of rectangular nanostrips separated by half-etched grooves. The proposed theory based on the coupled mode approach explains the major features observed experimentally, such as Brillouin zone folding and the asymmetry of the magnonic band-gap points in the reciprocal $k$ space.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call