Abstract
Duchenne's muscular dystrophy (DMD) is a lethal muscle disease caused by a lack of dystrophin expression at the sarcolemma of muscle fibers. We investigated retroviral vector delivery of dystrophin in dystrophin-deficient DMD(mdx) (hereafter referred to as mdx) mice via an ex vivo approach using mdx muscle-derived stem cells (MDSCs). We generated a retrovirus carrying a functional human mini-dystrophin (RetroDys3999) and used it to stably transduce mdx MDSCs obtained by the preplate technique (MD3999). These MD3999 cells expressed dystrophin and continued to express stem cell markers, including CD34 and Sca-1. MD3999 cells injected into mdx mouse skeletal muscle were able to deliver dystrophin. Though a relatively low number of dystrophin-positive myofibers was generated within the gastrocnemius muscle, these fibers persisted for up to 24 weeks postinjection. The injection of cells from additional MDSC/Dys3999 clones into mdx skeletal muscle resulted in varying numbers of dystrophin-positive myofibers, suggesting a differential regenerating capacity among the clones. At 2 and 4 weeks postinjection, the infiltration of CD4- and CD8-positive lymphocytes and a variety of cytokines was detected within the injected site. These data suggest that the transplantation of retrovirally transduced mdx MDSCs can enable persistent dystrophin restoration in mdx skeletal muscle; however, the differential regenerating capacity observed among the MDSC/Dys3999 clones and the postinjection immune response are potential challenges facing this technology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.