Abstract

This study investigated the function of perivascular adipose tissue (PVAT) on vascular contractility within resistant arteries in high-fat diet induced obese rats after long-term aerobic exercise. Male Sprague-Dawley rats were subjected to normal diet control group (N-CTRL), normal diet exercise group (N-EX), high-fat diet control group (H-CTRL), and high-fat diet exercise group (H-EX) (n=8 in each group). After intervention, adipose tissues morphology was observed. Vasomotor function of mesenteric arteries with or without PVAT were assessed; mesenteric PVAT isolated from each group were transferred to chambers bath with untreated vessels (without PVAT) to evaluate the independent effect. Isolated PVAT was further pre-treated with inhibitor of cystathionine-γ-lyase (CSE), a key hydrogen sulphide (H2 S) enzyme. Results showed that the size of lipid droplet around mesenteric arteries from H-EX was significantly reduced (P<.05); uncoupling protein1 (UCP1) in PVAT from H-EX was enhanced. In N-CTRL, N-EX, and H-EX, vessels without PVAT showed higher sensitivity to serotonin (5-HT) than that with intact PVAT. Vascular tension by 5-HT was significantly reduced in H-EX than H-CTRL (P<.05) in vessels with PVAT. Transferred PVAT from H-EX compared with H-CTRL significantly reduced vascular sensitivity to 5-HT (P<.05), and this effect was eliminated through inhibiting CSE. In summary, the anti-contractile effect of PVAT on resistance artery was impaired in obesity but restored by long-term aerobic exercise. The function of PVAT modified by obesity or by exercise has an independent influence on vascular reactivity, and PVAT derived H2 S may participate in this process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.