Abstract
Model sets are projections of certain lattice subsets. It was realized by Moody [Uniform distribution in model sets. Canad. Math. Bull. 45(1) (2002), 123–130] that dynamical properties of such a set are induced from the torus associated with the lattice. We follow and extend this approach by studying dynamics on the graph of the map that associates lattice subsets to points of the torus and then we transfer the results to their projections. This not only leads to transparent proofs of known results on model sets, but we also obtain new results on so-called weak model sets. In particular, we prove pure point dynamical spectrum for the hull of a weak model set of maximal density together with the push forward of the torus Haar measure under the torus parametrization map, and we derive a formula for its pattern frequencies.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have