Abstract
In the framework of phenomenological time-dependent Ginzburg–Landau (TDGL) formalism, the dynamical properties of vortex–antivortex (V-Av) pair in a superconductor film with a narrow slit was studied. The slit position and length can have a great impact not only on the vortex dynamical behavior but also the current–voltage (I–V) characteristics of the sample. Kinematic vortex lines can be predominated by the location of the slit. In the range of relatively low applied currents for a constant weak magnetic field, kinematic vortex line appears at right or left side of the slit by turns periodically. We found such single-side kinematic vortex line cannot lead to a jump in the I–V curve. At higher applied currents the phase-slip lines can be observed at left and right sides of the slit simultaneously. The competition between the vortex created at the lateral edge of the sample and the V-Av pair in the slit will result in three distinctly different scenarios of vortex dynamics depending on slit length: the lateral vortex penetrates the sample to annihilate the antivortex in the slit; the V-Av pair in the slit are driven off and expelled laterally; both the lateral vortex and the slit antivortex are depinned and driven together to annihilation in the halfway.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have