Abstract
The periodically forced light-limited Droop model represents microalgae growth under co-limitation by light and a single substrate, accounting for periodic fluctuations of factors such as light and temperature. In this paper, we describe the global dynamics of this model, considering general monotone growth and uptake rate functions. Our main result gives necessary and sufficient conditions for the existence of a positive periodic solution (i.e. a periodic solution characterized by the presence of microalgae) which is globally attractive. In our approach, we reduce the model to a cooperative planar periodic system. Using results on periodic Kolmogorov equations and on monotone sub-homogeneous dynamical systems, we describe the global dynamics of the reduced system. Then, using the theory of asymptotically periodic semiflows, we extend the results on the reduced system to the original model. To illustrate the applicability of the main result, we include an example considering a standard microalgae population model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.