Abstract

The dynamic features of interspike interval sequences and structures of spatiotemporal patterns of firing in a coupled noisy neural network are investigated. The system displays complex dynamics under periodic external stimuli. The dynamics is modulated by a periodic impulse-like synaptic current which relates to a global coupling interaction between neurons. The firings of the stimulated neurons are phase-locked to this current. In addition, the interspike interval histograms are studied for the case of frozen noise which does not change its value within a time interval once it has been distributed onto the network. It is found that the peaks in these histograms are located at integer multiples of the period of the external stimulus, and the heights of these peaks decay exponentially, which corresponds to the experimental results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call