Abstract
The positive parity scalar D*s0(2317) and axial-vector D*s1(2460) charmed strange mesons are generated by coupled-channel dynamics through the s-wave scattering of Goldstone bosons off the pseudoscalar and vector D(Ds)-meson ground states. The specific masses of these states are obtained as a consequence of the attraction arising from the Weinberg–Tomozawa interaction in the chiral Lagrangian. Chiral corrections to order Q2χ are calculated and found to be small. The D*s0(2317) and D*s1(2460) mesons decay either strongly into the isospin-violating π0Ds and π0D*s channels or electromagnetically. We show that the π0-η and (K0D+-K+D0) mixings act constructively to generate strong widths of the order of 140 keV and emphasize the sensitivity of this value to the KD component of the states. The one-loop contribution to the radiative decay amplitudes of scalar and axial-vector states is calculated using the electromagnetic Lagrangian to chiral order Q2χ. We show the importance of taking into account processes involving light vector mesons explicitly in the dynamics of electromagnetic decays. The radiative width are sensitive to both ηDs and KD components, hence providing information complementary to the strong widths on the positive parity Ds-meson structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.