Abstract
Fuel film that adhered on engine walls from spray impingement is considered a primary source of harmful combustion emissions. However, the physics of the wall film formation, propagation, and breakup is not fully understood yet because of its multiphase nature. Existing literature has revealed that the mass transportation within the fuel film takes a wave propagation form. This article aims to identify the dynamics of the wall film during spray impingement via high-speed laser diagnostics. In this work, a single-hole injector was used and the spray impinged onto a stage made of sapphire glass for diagnostics purposes. Iso-octane was used as the fuel and 10% ethanol was blended to dope rhodamine 6G as the fluorescent species for laser excitation. Simultaneous optical measurements, such as laser-induced fluorescence and Mie scattering, are performed to obtain the characteristics of the wall film quantitatively. Various aspects of the wall film, including the frequency of the wave, wave speed, and wave height, are inspected. The impact of fuel temperature and wall temperature under typical cold-start conditions are also studied to investigate the temperature dependence of the wall film dynamics. The research is also intended to provide quantitative experimental data for numerical models for impingement prediction and thus help the process of emission reduction and combustion optimization of internal combustion engines.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have