Abstract

The anterior pituitary tissue of male rats injected with growth hormone-releasing factor (GRF) was either processed for stereology at the light- and electron-microscopic levels, or homogenized for growth hormone (GH) assay 2-60 min after GRF injection. Secretory granules of somatotrophs became smaller but increased in numerical density 2 min after GRF injection. Their volume density began to increase at 5 min. The frequency of exocytosis of the granules was most prominent as early as 2 min after GRF injection and reduced thereafter. GH levels in the tissue were lowest at 2-5 min, and returned to the control value by 60 min. Serum GH levels were highest at 15 min; even at 60 min, this value was higher than in the controls. These findings suggest that secretory granules in somatotrophs are stimulated to divide by GRF, resulting in a decrease in size and an increase in number. The discrepancy between the earlier formation of new secretory granules and the later restoration of intracellular GH levels implies that GRF first stimulates the synthesis of constituents of granules other than GH, and only later the synthesis of GH, and that newly formed small secretory granules contain less GH. From the clearance rate of serum GH and the frequency of granule exocytosis, it can be estimated that about a half million granules are released to maintain 1 ng/ml of serum GH in rats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call