Abstract
We study the dynamics of up to two Rydberg excitations and the correlation growth in a chain of atoms coupled to a photonic crystal waveguide. In this setup, an excitation can hop from one atom to another via exponentially decaying exchange interactions mediated by the waveguide. An initially localized excitation undergoes a continuous-time quantum walk for short-range hopping, and for long-range, it experiences quasi-localization. Besides that, the inverse participation ratio reveals a super-ballistic diffusion of the excitation in short times, whereas, at a long time, it becomes ballistic. For two initially localized excitations, intriguing, and complex dynamical scenarios emerge for different initial separations due to the competition between the Rydberg-Rydberg and exchange interactions. In particular, the two-point correlation reveals a light-cone behavior even for sufficiently long-range exchange interactions. Additionally, we characterize the growth of bipartite entanglement entropy, which exhibits a global bound if only one excitation is present in the dynamics. Finally, we analyze the effect of imperfections due to spontaneous emission from the Rydberg state into photons outside the waveguide and show that all physical phenomena we predict are well within experimental reach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.