Abstract

In this work, we study the dynamics of quantum correlation (QC) in terms of quantum discord and its transfer for multiqubit systems in dissipative environments. At first, we investigate the dynamics of bipartite QC contained in a three-qubit system that are initially prepared in an extended W-like state with each qubit coupled to an independent reservoir. Subsequently, we study a realistic quantum network of several remote nodes each of which contains two qubits in contact with a common reservoir. For the simplest case of two nodes, we study the dynamics of QC and its transfer from the initially correlated system to the reservoirs and other degrees of freedom. In both models, we pay particular attention to the independent evolution and transfer of QC without the participation of entanglement when the systems of interest are initially prepared in unentangled states. We also observe the occurrence of sudden changes of quantum discord when the systems are initially in mixed states.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call