Abstract
Limited stability of metal nanoparticles hinders their long-term uses and applications. For metal nanoclusters, this is even more critical, as physicochemical properties rely on the structure of only a few hundred atoms. Here, we study the irreversible change that Au25(SR)18 suffers upon interaction with 2D metal surfaces. Experimental and density functional theory results allow us to identify the triggering factors of the decomposition process. Our thermodynamic-based approach can be extended to other metal nanocluster/substrates, turning it into a useful tool for predicting the nanoscale stability of these systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.