Abstract

Currently, to solve the bone deficiency problem in the maxillofacial region, osteoplastic materials based on allogeneic and xenogenic collagen bone matrix are used, both in pure and in activated forms, by adding growth factors. It is impossible to determine the effectiveness and mechanisms of the osteoplastic materials effect on bone regeneration without a comprehensive study, including not only histological, but also morphometric studies of the structural components and cellular reactions in the impact area. Such studies provide reliable and objective information on the main processes taking place in bone regeneration.Purpose. To determine the spatial distribution of reparative osteogenesis in the presence of some osteoplastic materials in vitro.Materials and methods. Svetlogorsk breed pigs were used as a biomodel. Depending on the osteoplastic preparations used, the animals were divided into four groups of the two in each: 1st — a preparation based on a natural bovine bone graft was injected into bone defects. 2nd — a preparation based on collagenized porcine transplant was injected into bone defects. 3rd — a preparation consisting of 60 % hydroxyapatite (HA) and 40 % beta-tri-calcium phosphate; 4th — control group — the bone defect healed under a blood clot. Animals were removed from the experiment on the 45th day. We examined sections with a thickness of 20 μm using the method of light and fluorescence microscopy.Results. The results indicate different dynamics of the reparative osteogenesis in the presence of osteoplastic materials of different classes. In group 1, the filling of the defect with newly formed bone tissue is not uniform; in group 2, the filling of the defect with newly formed bone tissue is uniform; in group 3 the filling of the defect with non-formed bone tissue is uneven due to the pronounced hyperostosis; in the control group, the filling of the defect with newly formed bone tissue is not happening.Conclusion. Stimulation, the dynamics of reparative osteogenesis and the three-dimensional organization of bone regenerate depend on the osteoplastic material class, which requires further study of the dynamics and three-dimensional organization of bone regenerate to select the optimal bone-replacing agent.

Highlights

  • Depending on the osteoplastic preparations used, the animals were divided into four groups of the two in each: 1st — a preparation based on a natural bovine bone graft was injected into bone defects. 2nd — a preparation based on collagenized porcine transplant was injected into bone defects. 3rd — a preparation consisting of 60 % hydroxyapatite (HA) and 40 % beta-tri-calcium phosphate; 4th — control group — the bone defect healed under a blood clot

  • Results.The results indicate different dynamics of the reparative osteogenesis in the presence of osteoplastic materials of different classes

  • Stimulation, the dynamics of reparative osteogenesis and the three-dimensional organization of bone regenerate depend on the osteoplastic material class, which requires further study of the dynamics and three-dimensional organization of bone regenerate to select the optimal bone-replacing agent

Read more

Summary

Introduction

Динамика репаративного гистогенеза костной ткани в присутствии некоторых остеопластических материалов в лабораторных условиях Dynamics of reparative histogenesis of bone tissue in presence of some osteoplastic materials in vitro Цель исследования: определение пространственного распространения репаративного остеогенеза в присутствии некоторых остеопластических материалов в лабораторных условиях.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call