Abstract

One of the few possible mechanisms for self-propulsion at low Reynolds number is undulations of a passive elastic tail, as proposed in the classical work of Purcell (1977). This effect is studied here by investigating a variant of Purcell's three-link swimmer model where the front joint angle is periodically actuated while the rear joint is driven by a passive torsional spring. The dynamic equations of motion are formulated and explicit expressions for the leading-order solution are derived by using perturbation expansion. The dependence of the motion on the actuation amplitude and frequency is analyzed, and optimization with respect to the swimmer's geometry is conducted.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call