Abstract

Ligaria cuneifolia (R. et P.) Tiegh. (Loranthaceae) is a South American hemiparasitic species with antioxidant, antitumoral, antimicrobial, and antilipidemic activities attributed to its polyphenolic content. We studied the polyphenolic pattern of L. cuneifolia during different phenological stages: flowering, fruiting, and post-fruiting. The highest total phenolic content was found in stems at post-fruiting (214 ± 12.1 mg gallic acid eq·g−1 DW) and fruiting (209 ± 13.7 mg gallic acid eq·g−1 DW), followed by post-fruiting leaves (207 ± 17.5 mg gallic acid eq·g−1 DW). Flavonoids accumulated at higher levels in leaves and hydroxycinnamic acids in leaves at flowering and post-fruiting. The polyphenolic pattern was similar between organs from wild plants and in vitro cultures, although at a significantly lower level in the latter ones. The performance of calli growing under a 16 h photoperiod in a modified White medium with 1-naphthalene acetic acid (2.50 μM) and Kinetin (9.20 μM) was better than in the dark. When calli grew in media only with auxins (IAA, NAA, and 2,4-D, all at 2.50 µM concentration), its growth and polyphenolic content improved. Cell suspensions with 2.50 µM NAA and 9.20 µM KIN grew slowly and produced very small amounts of polyphenols. As for the antioxidant activity, it was detected in all samples (approximately 1000 µmol trolox eq·g−1 DW) except fruits, where a lower value was found (328 µmol trolox eq·g−1 DW). In vitro cultures have the lowest antioxidant activity when compared to methanolic extracts from organs of wild specimens. Finally, antimutagenic or mutagenic activity in wild plants and in vitro culture extracts was not detected by the Ames test.

Highlights

  • Mistletoes are plant species from the Loranthaceae and Santalaceae families, spread worldwide

  • We studied the dynamics of polyphenolic production in different organs of L. cuneifolia wild specimens in different phenological stages

  • We found significant differences in the total phenolic content (TPC; p < 0.05) among organs in the three studied phenological stages

Read more

Summary

Introduction

Mistletoes are plant species from the Loranthaceae and Santalaceae families, spread worldwide. L. cuneifolia is a hemiparasite species that, due to its morphological similarities and growth behavior, was used as a substitute for the European mistletoe (Viscum album L., Santalaceae) by the first European immigrants [3]. Ethnobotanical studies have reported L. cuneifolia use as antihemorrhagic, abortive, emmenagogue, and oxytocic and against cephalgia, gastralgias, sore throat, and hypothermia [2]. Phytochemical studies have identified several compounds potentially responsible for the above-mentioned activities. Production of secondary metabolites, including plant polyphenolics, depends on numerous factors, such as growth conditions (light, temperature, altitude, nutrient availability), plant phenological stage, and organ. We studied the dynamics of polyphenolic production in different organs of L. cuneifolia wild specimens in different phenological stages

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call