Abstract

We have followed the coarsening dynamics of a single layer of cylindrical block copolymer microdomains in a thin film. This system has the symmetry of a two-dimensional smectic. The orientational correlation length of the microdomains was measured by scanning electron microscopy and found to grow with the average spacing between +/-1/2 disclinations, following a power law xi2(t) approximately t(1/4). By tracking disclinations during annealing with time-lapse atomic force microscopy, we observe dominant mechanisms of disclination annihilation involving tripoles and quadrupoles (three and four disclinations, respectively). We describe how annihilation events involving multiple disclinations result in similarly reduced kinetic exponents as observed here. These results map onto a wide variety of physical systems that exhibit similarly striped patterns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.