Abstract
ABSTRACTWe have utilized time-resolved high-temperature atomic force microscopy (AFM) to investigate the mechanism by which topographic templates induce alignment of cylinder-forming diblock copolymer thin films. By tracking the same sample spot during thermal annealing, we observed that the structural evolution and alignment of thin films in confinement involve an intermediate state with disordered morphology and the evolution and annihilation of disclination quadrupoles guided by the channel edges, which ultimately lead to the essentially perfect alignment of cylindrical microdomains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.