Abstract

The frictional properties of two sliding surfaces are often influenced by a fluid lubricant’s ability to separate and facilitate movement. When particles are present, their entrainment between surfaces can alter friction, either increasing or decreasing it compared to fluid lubrication alone. Understanding the frictional regimes and the dynamics driving particle entrainment in suspensions is thus critical. This study investigates the tribological properties of glass particles suspended in various fluid matrices. We examined suspensions with varying particle concentrations, fluid viscosities, fluid hydrophobicity, and particle hydrophobicity. Our findings reveal that particle lubrication dominates under the following conditions: (I) high particle concentrations, (II) high fluid viscosities, (III) strong particle – surface interactions, and (IV) weak fluid – particle interactions. These insights are crucial for applications in food science, biomedical industries, and pharmaceuticals, where controlling particle friction is essential for optimizing consumer satisfaction and ensuring the performance and safety of lubricants in medical devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.