Abstract

The formation of droplets in microchannels (droplet microfluidics) has a large number of applications, such as in micro-dosing and gas meters. This paper considers the dynamics of direct and inverse emulsions based on water, polydimethylsiloxane, and synthetic and mineral oil in microfluidic chips based on two technologies: glass–parafilm–glass sandwich structures and removable scaffold in a silicone compound. It is shown that wettability, roughness and chip wall material; channel thickness; magnetic fluid flow rate; and magnetic field strength affect the size of emulsion droplets formed in a microfluidic chip. The addition of another mechanism for regulating the hydrodynamics of emulsions using a magnetic field opens up new possibilities for the development of promising devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call