Abstract

Focused on the unsteady property of a cavitating water jet issuing from an orifice nozzle in a submerged condition, this paper presents a fundamental investigation of the periodicity of cloud shedding and the mechanism of cavitation cloud formation and release by combining the use of high-speed camera observation and flow simulation methods. The pattern of cavitation cloud shedding is evaluated by analyzing sequence images from a high-speed camera, and the mechanism of cloud formation and release is further examined by comparing the results of flow visualization and numerical simulation. It is revealed that one pair of ring-like clouds consisting of a leading cloud and a subsequent cloud is successively shed downstream, and this process is periodically repeated. The leading cloud is principally split by a shear vortex flow along the nozzle exit wall, and the subsequent cloud is detached by a re-entrant jet generated while a fully extended cavity breaks off. The subsequent cavitation cloud catches the leading one, and they coalesce over the range of x/d≈1.8~2.5. Cavitation clouds shed downstream from the nozzle at two dominant frequencies. The Strouhal number of the leading cavitation cloud shedding varies from 0.21 to 0.29, corresponding to the injection pressure. The mass flow rate coefficient fluctuates within the range of 0.59~0.66 at the same frequency as the leading cloud shedding under the effect of cavitation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.