Abstract

We revisit the question of wave-number selection in pattern-forming systems by studying the one-dimensional stabilized Kuramoto-Sivashinsky equation with additive noise. In earlier work, we found that a particular periodic state is more probable than all others at very long times, establishing the critical role of noise in the selection process. However, the detailed mechanism by which the noise picked out the selected wave number was not understood. Here, we address this issue by analyzing the noise-averaged time evolution of each unstable mode from the spatially homogeneous state, with and without noise. We find drastic differences between the nonlinear dynamics in the two cases. In particular, we find that noise opposes the growth of Eckhaus modes close to the critical wave number and boosts the growth of Eckhaus modes with wave numbers smaller than the critical wave number. We then hypothesize that the main factor responsible for this behavior is the excitation of long-wavelength (q→0) modes by the noise. This hypothesis is confirmed by extensive numerical simulations. We also examine the significance of the magnitude of the noise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.