Abstract

Munc18-1 is a mammalian member of the SEC1 protein family implicated in neuronal secretion. Its sequence contains several consensus sites for phosphorylation by protein kinase C (PKC), a kinase known to enhance secretion. We have characterized the phosphorylation of the synaptic munc18-1 pool by endogenous, presynaptic PKC-isoforms. In isolated rat brain nerve terminals, munc18-1 was almost completely nonphosphorylated. Its phosphorylation state increased by 250% on inhibition of endogenous phosphatases and by 1500% on additional, direct PKC activation using phorbol esters. K+-evoked depolarization also increased munc18-1 phosphorylation, by 50% within 5 s in a Ca2+-dependent manner. Munc18-1 phosphorylation in nerve terminals was blocked by PKC inhibitors. Activation of endogenous PKC in nerve terminals inhibited the interaction of synaptic munc18-1 with its binding partner syntaxin-1A by 50%. Munc18-1 antisera precipitated 80% of native, brain-derived munc18-1 from salt solutions, but only 12% from synaptosomal lysates, together with 6% synaptic syntaxin-1A/B; these amounts were not changed by PKC activation. In this 12%, the phosphate incorporation per mole of munc18 was four-fold lower than the total pool. We conclude that the synaptic munc18-1 pool can be readily and rapidly phosphorylated by endogenous presynaptic PKC isoforms. A high constitutive phosphatase activity keeps its basal phosphorylation state low so that PKC activation can increase the phosphorylation state dramatically. These phosphorylation dynamics and the effects on the interaction with syntaxin-1A make munc18-1 a prominent candidate to account for PKC-dependent enhancement of secretion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.