Abstract

Molecules immersed in liquid helium are excellent probes of superfluidity. Their electronic, vibrational, and rotational dynamics provide valuable clues about the superfluid at the nanoscale. Here we report on the experimental study of the laser-induced rotation of helium dimers inside the superfluid 4He bath at variable temperature. The coherent rotational dynamics of [Formula: see text] is initiated in a controlled way by ultrashort laser pulses and tracked by means of time-resolved laser-induced fluorescence. We detect the decay of rotational coherence on the nanosecond time scale and investigate the effects of temperature on the decoherence rate. The observed temperature dependence suggests a nonequilibrium evolution of the quantum bath, accompanied by the emission of the wave of second sound. The method offers ways of studying superfluidity with molecular nanoprobes under variable thermodynamic conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.