Abstract
Abstract A modified Leslie–Gower-type prey–predator model composed of a logistic prey with Holling’s type II functional response is studied. The axial point (1, 0) is found to be globally asymptotically stable in a domain. Condition for stability of the non-trivial equilibrium point is obtained. The existence of stable limit cycle of the system is also established. The analysis for Hopf bifurcation is carried out. The numerical simulations are carried out to study the effects of seasonally varying parameters of the model. The system shows the rich dynamic behavior including bifurcation and chaos.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.