Abstract

Micronutrient fertilization is usually neglected by producers, especially for peanut, a crop that is frequently grown in crop rotation systems due to its low perceived nutrient requirements. New peanut cultivars are able to achieve high yields when grown under suitable conditions. However, fertilization recommendation tables are dated and do not consider the need for micronutrients. To support improvements in these recommendations, this study quantified the micronutrient demand (B, Cu, Fe, Mn, and Zn) of three runner peanut cultivars (IAC Runner 886, IAC 505, and IAC OL3) during the biological cycle and the transport of these micronutrients to pods and kernels. The experiment was carried out in a randomized complete block with a split-plot design and nine replications. The whole plots consisted of the three peanut cultivars, and the subplots comprised nine plant samplings (at 14, 28, 42, 56, 70, 84, 105, 126, and 147 days after emergence (DAE)). These modern peanut cultivars exhibited high uptake and accumulation of Fe, but the proportion of Fe removed by pods and kernels was lowest among all analyzed micronutrients. The second-most-accumulated micronutrient was Mn. The maximum requirement for micronutrients of peanut occurred around 84 DAE, and IAC 505 had the highest micronutrient uptake and accumulation among the cultivars (especially at later stages), followed by IAC OL3 and IAC Runner 886. Our results provide new insights into micronutrient requirements for peanut and demonstrate the need for new fertilizer recommendation programs for peanut cultivation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call