Abstract

Low-energy electrons (<2 eV) can fragment gas phase formic acid (HCOOH) molecules through resonant dissociative attachment processes. Recent experiments have shown that the principal reaction products of such collisions are formate ions (HCOO-) and hydrogen atoms. Using first-principles electron scattering calculations, we have identified the responsible negative ion state as a transient pi* anion. Symmetry considerations dictate that the associated dissociation dynamics are intrinsically polyatomic: a second anion surface, connected to the first by a conical intersection, is involved in the dynamics and the transient anion must necessarily deform to nonplanar geometries before it can dissociate to the observed stable products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call