Abstract

The crystal structures of the complexes of L and DL histidine with formic acid have been determined as part of an effort to define biologically and evolutionarily important interactions and aggregation patterns. In terms of ionization state and stoichiometry they may be described as L-histidine formate formic acid and DL-histidine formate monohydrate respectively. In the L-histidine complex, amino acid molecules arranged in head-to-tail sequences centred around 21 screw axes are interconnected by formic acid molecules and formate ions. Histidine-formate interactions in the structure gives rise to a characteristic interaction pattern involving a linear array of alternating imidazole groups and formate ions. In DL-histidine formale monohydrate, head-to-tail sequences involving glide related molecules are interconnected through main chain-side chain interactions leading to amino acid layers. The layers are held together by formate ions and water molecules arranged in strings along which the ion and the molecule alternate. The patterns of amino acid aggregation in histidine complexes exhibit considerably higher variability than those in complexes involving arginine and lysine do.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call