Abstract

Multiple beam interferometry and video microscopy were used to investigate the layering transition of thin liquid films of 1-undecanol confined between atomically smooth mica surfaces. The expulsion of a molecularly thin lubricant layer was followed directly in two dimensions. Overall, the dynamics of the transition follows theoretical predictions based on two-dimensional hydrodynamics. Frequently, pockets of liquid remain trapped inside the contact area at the end of the transition. The trapped pockets undergo shape transformations to minimize elastic and interfacial energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.