Abstract

Results of a three dimensional unsteady computational study of a row of jets injected normal to a cross-flow are presented with the aim of understanding the dynamics of the large scale structures in the region near the jet. The jet to cross-flow velocity ratio is .5. A modified version of the computer program (INS3D) which utilizes the method of artificial compressibility is used for the computations. Results obtained clearly indicate that the near field large scale structures are extremely dynamical in nature, and undergo breakup and reconnection processes. The dynamical near field structures identified include the counter rotating vortex pair (CVP), the horseshoe vortex, wake vortex, wall vortex and the shear layer vortex. The dynamical features of these vortices are presented in this paper. The CVP is observed to be a convoluted structure interacting with the wall and horseshoe vortices. The shear layer vortices are stripped by the crossflow, and undergo pairing and stretching events in the leeward side of the jet. The wall vortex is reoriented into the upright wake system. Comparison of the predictions with mean velocity measurements is made. Reasonable agreement is observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.