Abstract
In this work we investigate the excited-state structure and dynamics of the two molecules 1,8-naphthalimide (NI) and N-methyl-1,8-naphthalimide (Me-NI) in the gas phase by picosecond time- and frequency-resolved multiphoton ionization spectroscopy. The energies of several electronically excited singlet and triplet states and the S1 vibrational wavenumbers were calculated. Nonadiabatic dynamics simulations support the analysis of the radiationless deactivation processes. The origin of the S1 ← S0 (ππ*) transition was found at 30, 082 cm(-1) for NI and at 29, 920 cm(-1) for Me-NI. Furthermore, a couple of low-lying vibrational bands were resolved in the spectra of both molecules. In the time-resolved scans a biexponential decay was apparent for both Me-NI and NI. The fast time constant is in the range of 10-20 ps, whereas the second one is in the nanosecond range. In accordance with the dynamics simulations, intersystem crossing to the fourth triplet state S1 (ππ*) → T4 (nπ*) is the main deactivation process for Me-NI due to a large spin-orbit coupling between these states. Only for significant vibrational excitation internal conversion via a conical intersection becomes a relevant deactivation pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.