Abstract

The efficient population of the low-lying triplet ππ * state of psoralen is studied with the quantum chemical CASPT2 method. Minima, singlet–triplet crossings, conical intersections, and reaction paths on the low-lying singlet and triplet states hypersurfaces of the system have been computed together with electronic energy gaps and spin–orbit coupling terms. A mechanism is proposed, favorable in the gas phase, for efficient deactivation of the initially populated singlet excited ππ * state, starting with an intersystem crossing with an nπ * triplet state and evolving via a conical intersection toward the final lowest-lying ππ * triplet state, protagonist of the reactivity of psoralen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call