Abstract

The enol–keto excited state dynamics of a series of emission tunable imidazole derivatives undergoing excited state intramolecular proton transfer (ESIPT) were determined by means of steady state and time-resolved spectroscopic techniques in different solvents at room temperature and at 77 K. Examination of the corresponding non-ESIPT compounds, with the proton transfer function deliberately blocked, was carried out for comparison. At room temperature, the ESIPT process in the examined samples, determined by picosecond streak camera experiments, had lifetimes ranging from less than 10 ps to ca. 100 ps, and the resulting keto forms deactivated with lifetimes less than 100 ps up to a few nanoseconds. Delayed luminescence detection at 77 K in solid glasses allowed the identification of the phosphorescence of the enolic form and, in a few cases, P-type delayed fluorescence was also seen. The phosphorescence lifetimes were in the range of seconds at 77 K. The enolic triplet excited state absorption at RT, determined by nanosecond laser flash-photolysis, displayed a maximum around 460–500 nm and lifetimes on the order of tens of microseconds. In a few cases, a broad band with a maximum around 420 nm was detected and tentatively ascribed to the triplet excited state of the keto form. Reaction rates with oxygen on the order of (2–4) × 109 M–1 s–1 were measured.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.