Abstract

We consider the singularly perturbed Hodgkin–Huxley system subject to Neumann boundary conditions. We construct a family of exponential attractors {ℳε} which is continuous at ε = 0, ε being the parameter of perturbation. Moreover, this continuity result is obtained with respect to a metric independent of ε, compared with all previous results where the metric always depends on ε. In the latter case, one needs to consider more regular function spaces and more smoother absorbing sets. Our results show that we can construct and analyse the stability of exponential attractors in a natural phase-space as it is known for the global attractor. Also, a new proof of the upper semicontinuity of the global attractor 𝒜ε at ε = 0 is given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.