Abstract

Dynamics of formation of drops of non-Newtonian liquids from capillary tubes is studied computationally. The rheology of the drop liquids is described by a constitutive relation that accounts for both deformation-rate-thinning and -thickening. The analysis is expedited by reducing the original system of three-dimensional but axisymmetric equations to a system of one-dimensional slender-jet equations. The slender-jet equations are solved by a method of lines using a finite element method for spatial discretization and an adaptive finite difference method for time integration. The simulations follow the formation in time of thousands of drops in sequence, including any satellites that may be produced upon the breakup of a thin thread connecting an about-to-form primary drop to the rest of the liquid attached to the tube. Rate-thickening is shown to produce bead-on-string patterns, which are typically attributed to viscoelastic effects, along the thin threads as they near pinch-off. Rate-thinning, on the other hand, is demonstrated to reduce the length of such thin threads. Simulations are used to identify conditions that may lead to minimization and/or elimination of unwanted satellites. Analysis of dripping or leaky faucets of non-Newtonian liquids reveals rich nonlinear dynamical behavior. As with Newtonian liquids, simple periodic or P-1, where P stands for period, dripping at low flow rates gives way to more complex responses as flow rate is increased. In addition to P-1, P-2, and P-4 responses seen in recent computational analyses of dripping faucets of Newtonian liquids, the new non-Newtonian simulations have also uncovered difficult-to-find P-3 responses as well as chaotic states. Rate-thinning and low viscosities are shown to enhance the complexity of observed responses. Rate-thickening, on the other hand, lowers the critical value of the flow rate for the onset of complexity but narrows the range of flow rates over which the dynamics is complex. The possibility of hysteresis is demonstrated and the effect of fluid rheology on the value of the flow rate for transition from dripping to jetting is determined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call