Abstract

The effect of fluid rheology on particle migration induced by fluid viscoelasticity in a square-shaped microchannel is reported. Three water polymer solutions of PolyEthylene Oxyde at different concentrations, corresponding to different elasticity and degree of shear thinning, are prepared and rheologically characterized. Experiments are carried out for a wide range of flow rates, and the particle distributions over the channel cross section are reconstructed by combining particle tracking measurements and numerical simulations of the fluid velocity profile. The particle distributions show that the migration direction strongly depends on the fluid rheology. Specifically, when particles explore the constant viscosity region of the suspending liquids, they are focused around the channel centerline. Such an effect is more and more pronounced as the flow rate increases. On the other hand, for particles suspended in a shear-thinning fluid, a different scenario appears: At low flow rates, i.e., in the constant viscosity region, particles still migrate toward the channel centerline, while at high flow rates, i.e., in the shear thinning region, the migration reverts direction and the particles are driven toward the corners of the channel cross section. Those experimental observations elucidate the relevant and competing role of elasticity and shear thinning, with obvious implications in designing microfluidic devices for particle manipulation. Finally, our results highlight the weak effect of inertia on particle migration as compared to viscoelastic effects, even for low elastic suspending liquids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.