Abstract
A detailed theoretical investigation of electron impact collision on n-butanol, a potential biofuel, is carried out over a wide energy impact range from 0.1 to 5000 eV. The low energy scattering calculations from 0.1 to 20 eV are performed using UK molecular R-matrix method via Quantemol-N software. This scattering investigation aims to predict various resonances by providing dissociative electron attachment via C–O bond cleavage. Furthermore, the study focuses on estimating several cross-sections namely elastic, differential, momentum transfer, excitation, ionization and total cross-section. In addition, we also computed higher energy cross-section from the ionization threshold to 5000 eV using the spherical complex optical potential (SCOP) method. A good agreement is observed between the computed cross-section at the overlapping energies of employing (SCOP and R-matrix) formalisms. Apart from the scattering study, we also obtained various resonances having significance at low energy. Theoretically predicted resonance peaks agree well with previously reported data and a few new resonance states are also identified. The cross-sectional data presented here will be beneficial as an input parameter modelling electron transport processes during the spark ignition.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have