Abstract

We investigate the effects of disorder on the synchronized state of a network of Hindmarsh–Rose neuronal models. Disorder, introduced as a perturbation of the neuronal parameters, destroys the network activity by wrecking the synchronized state. The dynamics of the synchronized state is analyzed through the Kuramoto order parameter, adapted to the neuronal Hindmarsh–Rose model. We find that the coupling deeply alters the dynamics of the single units, thus demonstrating that coupling not only affects the relative motion of the units, but also the dynamical behavior of each neuron; Thus, synchronization results in a structural change of the dynamics. The Kuramoto order parameter allows to clarify the nature of the transition from perfect phase synchronization to the disordered states, supporting the notion of an abrupt, second order-like, dynamical phase transition. We find that the system is resilient up to a certain disorder threshold, after that the network abruptly collapses to a desynchronized state. The loss of perfect synchronization seems to occur even for vanishingly small values of the disorder, but the degree of synchronization (as measured by the Kuramoto order parameter) gently decreases, and the completely disordered state is never reached.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.