Abstract

Memristors can be employed to mimic biological neural synapses or to describe electromagnetic induction effects. To exhibit the threshold effect of electromagnetic induction, this paper presents a threshold flux-controlled memristor and examines its frequency-dependent pinched hysteresis loops. Using an electromagnetic induction current generated by the threshold memristor to replace the external current in 2-D Hindmarsh-Rose (HR) neuron model, a 3-D memristive HR (mHR) neuron model with global hidden oscillations is established and the corresponding numerical simulations are performed. It is found that due to no equilibrium point, the obtained mHR neuron model always operates in hidden bursting firing patterns, including coexisting hidden bursting firing patterns with bistability also. In addition, the model exhibits complex dynamics of the actual neuron electrical activities, which acts like the 3-D HR neuron model, indicating its feasibility. In particular, by constructing the fold and Hopf bifurcation sets of the fast-scale subsystem, the bifurcation mechanisms of hidden bursting firings are expounded. Finally, circuit experiments on hardware breadboards are deployed and the captured results well match with the numerical results, validating the physical mechanism of biological neuron and the reliability of electronic neuron.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.