Abstract

This article investigates the field-driven motion of curved domain walls in ferromagnetic nanostructures under the framework of modified Landau–Lifshitz–Gilbert equation with inertial effects. The considered governing equation involves the torques arising from nonlinear dissipative (viscous and dry friction) and inertial effects. We study the most relevant dynamical features in the steady dynamical regime for the considered model by employing the reductive perturbation technique. Finally, we illustrate the results numerically for the various domain wall surfaces (plane, cylinder, and sphere) and discuss their physical significance. The results obtained here agree with the recent theoretical and experimental observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.