Abstract
In this paper, we investigate the analysis of Oldroyd 8-constant fluid flow with nanoparticle suspension via a porous media during the coating of wire is carried out. A constant magnetic field and electrically conducting fluid are considered. The governing equations thus obtained for the present model are converted to nonlinear differential equations using variables in dimensionless form. These equations are analytically solved. The influence of some parameters, like magnetic field parameter, porosity parameter, dilatant constant, pseudo-plastic constant and Brinkman number on velocity and temperature distributions are discussed graphically. For fluctuating viscosity, two models, Reynold’s and Vogel’s are considered. It is observed that the magnetic parameter and the Brinkman number increase, both temperature and velocity profiles show a retarding effect in both Reynold’s and Vogel’s models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.