Abstract
In the present study, the effects of reduced gravity and solar radiation on the magnetohydrodynamics (MHD) fluid flow and heat transfer past a solid and stationary sphere embedded in a porous medium are investigated. A model describing the considered configuration is put in dimensionless form using appropriate dimensionless variables and then transformed to primitive form for a smooth algorithm on a computing tool. A primitive form of the model is solved by employing the finite difference method. Solutions for variables of interest, such as velocity distribution and temperature field, along with their gradients, are depicted in graphs and tables. The main goal of the paper is to study the physical impact of reduced gravity on heat transfer and fluid flow around a sphere surface inserted in a porous medium in the presence of an applied magnetic field and solar radiation. The effects of the governing parameters, which are the reduced gravity parameter, magnetic field parameter, radiation parameter, porous medium parameter, and the Prandtl number, are discussed and physically interpreted. The displayed solutions indicate that velocity rises with the reduced gravity and solar radiation parameters but decreases with augmenting the Prandtl number, magnetic field parameter, and porous medium parameter. It is deduced from the presented results that the temperature becomes lower by increasing the values of the reduced gravity parameter and the Prandtl number, but, on the other hand, it becomes higher by increasing the values of the magnetic field, the porous medium, and the radiation parameters at all the considered positions of the surface of the sphere. A comparison between the present and already published results is performed to check the validity of the proposed numerical model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.