Abstract

The realization of superior reaction fields for the synthesis of nanomaterials with pulsed-laser ablation (PLA) in high-density media, such as liquids, high pressure gases, and supercritical fluids (SCFs), especially near the critical point (CP), and the important role of the formation and evolution of cavitation bubbles for tuning the properties of the nanomaterials have been reported. In this study, to further elucidate the dynamics of the fluid in the stages following PLA, the characteristic behavior of cavitation bubbles formed by PLA plasmas near the CP of CO2 has been investigated using shadowgraph imaging. The time evolution of the cavitation bubbles can be divided into six phases. These include a double-layer structure and a long-time stagnation of the cavitation bubbles, which are peculiar to experimental conditions near the CP. Both spatial and time scale of the cavitation bubbles are at maximum 4–5 times larger near the CP compared to high-pressure liquid and liquid-like SCF far from the CP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.